Menu Top
Non-Rationalised NCERT Books Solution
6th 7th 8th 9th 10th 11th 12th

Class 11th Chapters
1. Sets 2. Relations and Functions 3. Trigonometric Functions
4. Principle of Mathematical Induction 5. Complex Numbers and Quadratic Equations 6. Linear Inequalities
7. Permutations and Combinations 8. Binomial Theorem 9. Sequences and Series
10. Straight Lines 11. Conic Sections 12. Introduction to Three Dimensional Geometry
13. Limits and Derivatives 14. Mathematical Reasoning 15. Statistics
16. Probability

Content On This Page
Example 1 to 8 (Before Exercise 4.1) Exercise 4.1


Chapter 4 Principle Of Mathematical Induction

Welcome to the solutions for Chapter 4: Principle of Mathematical Induction (often abbreviated as PMI). This chapter introduces a uniquely powerful and elegant proof technique used extensively in mathematics to establish the truth of statements or propositions that involve natural numbers ($n \in \{1, 2, 3, \dots\}$) or, more generally, integers starting from a specific baseline value $k_0$. Unlike direct proofs or proofs by contradiction, mathematical induction operates like a chain reaction or a row of falling dominoes: if you can prove the first domino falls, and you can prove that any falling domino necessarily knocks over the next one, then you can conclude that all dominoes in the row will eventually fall. It's a method specifically designed to handle the infinite nature of the set of natural numbers, allowing us to prove a statement holds for every single natural number without having to check each one individually – an impossible task.

The Principle of Mathematical Induction provides a rigorous, structured framework for constructing such proofs. The solutions provided meticulously explain this principle and demonstrate its application through a mandatory three-step process. Let $P(n)$ be the statement we wish to prove true for all natural numbers $n \geq k_0$ (where $k_0$ is often 1). The three steps are:

  1. Basis Step (Prove $P(k_0)$ is true): First, we must establish a starting point. This involves verifying, typically through direct substitution or simple calculation, that the statement $P(n)$ holds true for the very first value in the sequence, usually $n=1$ (or the specified starting integer $k_0$). This is akin to proving the first domino falls. The solutions clearly demonstrate this initial verification for each problem.
  2. Inductive Hypothesis (Assume $P(k)$ is true): Next, we make a crucial assumption. We assume that the statement $P(n)$ is true for some arbitrary, but fixed, integer $k$, where $k \ge k_0$. This assumption, often explicitly stated as "Assume $P(k)$ is true for some integer $k \ge k_0$", does not claim $P(k)$ is true for all $k$; it's a temporary hypothesis used only for the next step. It's like assuming an arbitrary domino ($k$) falls.
  3. Inductive Step (Prove $P(k+1)$ is true using $P(k)$): This is the core deductive part of the proof. We must use the assumption that $P(k)$ is true (from Step 2) to logically demonstrate that the statement $P(n)$ must also hold true for the very next integer, $n = k+1$. This involves starting with the structure of $P(k+1)$ and manipulating it, often algebraically, incorporating the assumed truth of $P(k)$ at a key point, to ultimately show that $P(k+1)$ logically follows. This proves that if any domino ($k$) falls, it guarantees the next one ($k+1$) will also fall. The solutions meticulously show the required logical flow and algebraic manipulations for this step.

Upon successfully completing all three steps, the Principle of Mathematical Induction allows us to confidently conclude that the statement $P(n)$ is true for all natural numbers $n \ge k_0$. The solutions showcase the application of PMI across various types of mathematical statements frequently encountered:

Throughout the examples, the solutions emphasize the importance of a clear, structured proof format: explicitly stating the Basis Step, the Inductive Hypothesis, and the Inductive Step, and ensuring the logical connections and algebraic work within the Inductive Step are accurate and lead convincingly to the desired form of $P(k+1)$. Mastering PMI via these detailed solutions significantly enhances one's ability to construct rigorous mathematical arguments.



Example 1 to 8 (Before Exercise 4.1)

Example 1: For all n ≥ 1, prove that

$1^2 + 2^2 + 3^2 + 4^2 +…+ n^2 = \frac{n\;(n\;+\;1)(2n\;+\;1)}{6}$

Answer:

Given:

The statement $P(n): 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all integers $n \geq 1$.


To Prove:

The given statement $P(n)$ is true for all integers $n \geq 1$.


Proof:

We will prove the given statement using the Principle of Mathematical Induction.

Let the given statement be $P(n)$.

$P(n): \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

Step 1: Base Case (Verification for n=1)

We need to check if the statement $P(n)$ is true for $n=1$.

LHS of $P(1) = 1^2 = 1$

RHS of $P(1) = \frac{1(1+1)(2 \times 1+1)}{6} = \frac{1(2)(3)}{6} = \frac{6}{6} = 1$

Since LHS = RHS, the statement $P(n)$ is true for $n=1$.


Step 2: Inductive Hypothesis

Assume that the statement $P(n)$ is true for some arbitrary positive integer $k$, where $k \geq 1$.

That is, assume:

$1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$

... (i)


Step 3: Inductive Step (Proof for n=k+1)

We need to prove that the statement $P(n)$ is true for $n=k+1$, assuming $P(k)$ is true.

That is, we need to show that:

$1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$

$1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}$

Consider the LHS of $P(k+1)$:

LHS $= 1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$

We can group the first $k$ terms and use the Inductive Hypothesis (Equation i):

LHS $= (1^2 + 2^2 + 3^2 + \dots + k^2) + (k+1)^2$

LHS $= \frac{k(k+1)(2k+1)}{6} + (k+1)^2$

(Using equation (i))

Now, we need to simplify this expression to match the RHS of $P(k+1)$. Factor out the common term $(k+1)$:

LHS $= (k+1) \left[ \frac{k(2k+1)}{6} + (k+1) \right]$

Find a common denominator inside the brackets:

LHS $= (k+1) \left[ \frac{k(2k+1) + 6(k+1)}{6} \right]$

Expand the terms in the numerator inside the brackets:

LHS $= (k+1) \left[ \frac{2k^2 + k + 6k + 6}{6} \right]$

Combine like terms in the numerator:

LHS $= (k+1) \left[ \frac{2k^2 + 7k + 6}{6} \right]$

Now, we need to factor the quadratic expression in the numerator, $2k^2 + 7k + 6$. We look for two numbers that multiply to $2 \times 6 = 12$ and add up to 7. These numbers are 3 and 4.

$2k^2 + 7k + 6 = 2k^2 + 4k + 3k + 6$

$= 2k(k + 2) + 3(k + 2)$

$= (2k + 3)(k + 2)$

Substitute the factored form back into the expression for the LHS:

LHS $= (k+1) \left[ \frac{(k+2)(2k+3)}{6} \right]$

LHS $= \frac{(k+1)(k+2)(2k+3)}{6}$

This is exactly the RHS of $P(k+1)$.

Therefore, we have shown that $P(k+1)$ is true whenever $P(k)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n)$ is true for all integers $n \geq 1$.

Thus, for all $n \geq 1$,

$1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Example 2: Prove that 2n > n for all positive integers n

Answer:

Given:

The statement $P(n): 2^n > n$ for all positive integers $n$ (i.e., $n \geq 1$).


To Prove:

The given statement $P(n)$ is true for all positive integers $n$.


Proof:

We will prove the given statement using the Principle of Mathematical Induction.

Let the given statement be $P(n)$.

$P(n): 2^n > n$

Step 1: Base Case (Verification for n=1)

We need to check if the statement $P(n)$ is true for $n=1$.

LHS of $P(1) = 2^1 = 2$

RHS of $P(1) = 1$

Since $2 > 1$, the inequality $2^1 > 1$ is true.

Thus, the statement $P(n)$ is true for $n=1$.


Step 2: Inductive Hypothesis

Assume that the statement $P(n)$ is true for some arbitrary positive integer $k$, where $k \geq 1$.

That is, assume:

$$2^k > k$$

... (i)


Step 3: Inductive Step (Proof for n=k+1)

We need to prove that the statement $P(n)$ is true for $n=k+1$, assuming $P(k)$ is true.

That is, we need to show that:

$2^{k+1} > k+1$

Consider the LHS of the inequality for $n=k+1$:

LHS $= 2^{k+1}$

We can write $2^{k+1}$ as $2^k \times 2^1$ or $2^k \times 2$.

LHS $= 2^k \times 2$

From the Inductive Hypothesis (Equation i), we know that $2^k > k$. Multiply both sides of this inequality by 2 (since 2 is a positive number, the inequality direction does not change):

$$2^k \times 2 > k \times 2$$

(Multiplying equation (i) by 2)

So, $2^{k+1} > 2k$.

Now, we need to show that $2k \geq k+1$ for $k \geq 1$.

Subtract $k$ from both sides of $2k \geq k+1$:

$2k - k \geq (k+1) - k$

$k \geq 1$

This inequality $k \geq 1$ is true because $k$ is assumed to be a positive integer.

So, for all positive integers $k$, we have $2k \geq k+1$.

Combining the inequalities $2^{k+1} > 2k$ and $2k \geq k+1$, we get:

$$2^{k+1} > 2k \geq k+1$$

Therefore, $2^{k+1} > k+1$.

This shows that the statement $P(n)$ is true for $n=k+1$ whenever $P(k)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 2^n > n$ is true for all positive integers $n$.

Example 3: For all n ≥ 1, prove that

$\frac{1}{1.2}$ + $\frac{1}{2.3}$ + $\frac{1}{3.4}$ + … + $\frac{1}{n(n + 1)}$ = $\frac{n}{n \;+\; 1}$

Answer:

Given:

The statement $P(n): \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ for all integers $n \geq 1$.


To Prove:

The given statement $P(n)$ is true for all integers $n \geq 1$.


Proof:

We will prove the given statement using the Principle of Mathematical Induction.

Let the given statement be $P(n)$.

$P(n): \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$

Step 1: Base Case (Verification for n=1)

We need to check if the statement $P(n)$ is true for $n=1$.

LHS of $P(1) = \frac{1}{1(1+1)} = \frac{1}{1 \cdot 2} = \frac{1}{2}$

RHS of $P(1) = \frac{1}{1+1} = \frac{1}{2}$

Since LHS = RHS, the statement $P(n)$ is true for $n=1$.


Step 2: Inductive Hypothesis

Assume that the statement $P(n)$ is true for some arbitrary positive integer $k$, where $k \geq 1$.

That is, assume:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$$

... (i)


Step 3: Inductive Step (Proof for n=k+1)

We need to prove that the statement $P(n)$ is true for $n=k+1$, assuming $P(k)$ is true.

That is, we need to show that:

$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)((k+1)+1)} = \frac{k+1}{(k+1)+1}$

$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$

Consider the LHS of $P(k+1)$:

LHS $= \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)}\right) + \frac{1}{(k+1)(k+2)}$

Using the Inductive Hypothesis (Equation i), we can substitute the sum of the first $k$ terms:

LHS $= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$

(Using equation (i))

Now, we need to simplify this expression by combining the terms with a common denominator. The common denominator is $(k+1)(k+2)$.

LHS $= \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$

LHS $= \frac{k(k+2) + 1}{(k+1)(k+2)}$

LHS $= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$

The numerator $k^2 + 2k + 1$ is a perfect square trinomial, which factors as $(k+1)^2$.

LHS $= \frac{(k+1)^2}{(k+1)(k+2)}$

We can cancel one factor of $(k+1)$ from the numerator and the denominator (since $k \geq 1$, $k+1 \neq 0$):

LHS $= \frac{\cancel{(k+1)}(k+1)}{\cancel{(k+1)}(k+2)}$

LHS $= \frac{k+1}{k+2}$

This is exactly the RHS of $P(k+1)$.

Therefore, we have shown that $P(k+1)$ is true whenever $P(k)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ is true for all integers $n \geq 1$.

Example 4: For every positive integer n, prove that 7n – 3n is divisible by 4.

Answer:

Proof 1: Using Algebraic Identity

We know the algebraic identity:

$a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$

Substitute $a=7$ and $b=3$ into the identity:

$7^n - 3^n = (7-3)(7^{n-1} + 7^{n-2} \cdot 3 + \dots + 7 \cdot 3^{n-2} + 3^{n-1})$

$7^n - 3^n = 4(7^{n-1} + 7^{n-2} \cdot 3 + \dots + 7 \cdot 3^{n-2} + 3^{n-1})$

Since $n$ is a positive integer, the term $(7^{n-1} + 7^{n-2} \cdot 3 + \dots + 7 \cdot 3^{n-2} + 3^{n-1})$ is a sum and product of integers, and hence it is an integer.

Let $K = 7^{n-1} + 7^{n-2} \cdot 3 + \dots + 7 \cdot 3^{n-2} + 3^{n-1}$. Then $7^n - 3^n = 4K$, where $K$ is an integer.

Therefore, $7^n - 3^n$ is divisible by 4 for every positive integer $n$.


Proof 2: Using Mathematical Induction

Let $P(n)$ be the statement "$7^n - 3^n$ is divisible by 4".

Base Case (n=1):

For $n=1$, $7^1 - 3^1 = 7 - 3 = 4$.

Since 4 is divisible by 4, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some positive integer $k$. That is, assume $7^k - 3^k$ is divisible by 4.

This means $7^k - 3^k = 4m$ for some integer $m$.

From this, we can write $7^k = 4m + 3^k$.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., $7^{k+1} - 3^{k+1}$ is divisible by 4.

Consider $7^{k+1} - 3^{k+1}$:

$7^{k+1} - 3^{k+1} = 7 \cdot 7^k - 3 \cdot 3^k$

Substitute $7^k = 4m + 3^k$ from the induction hypothesis:

$7^{k+1} - 3^{k+1} = 7(4m + 3^k) - 3 \cdot 3^k$

$7^{k+1} - 3^{k+1} = 28m + 7 \cdot 3^k - 3 \cdot 3^k$

$7^{k+1} - 3^{k+1} = 28m + (7-3) \cdot 3^k$

$7^{k+1} - 3^{k+1} = 28m + 4 \cdot 3^k$

$7^{k+1} - 3^{k+1} = 4(7m + 3^k)$

Since $m$ is an integer and $k$ is a positive integer, $(7m + 3^k)$ is an integer.

Let $M = 7m + 3^k$. Then $7^{k+1} - 3^{k+1} = 4M$, where $M$ is an integer.

This shows that $7^{k+1} - 3^{k+1}$ is divisible by 4.

Thus, $P(k+1)$ is true.

Conclusion:

By the principle of mathematical induction, the statement "$7^n - 3^n$ is divisible by 4" is true for all positive integers $n$.

Example 5: Prove that (1 + x)n ≥ (1 + nx), for all natural number n, where x > – 1.

Answer:

Given:

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

$x$ is a real number such that $x > -1$.

To Prove:

$(1 + x)^n \ge (1 + nx)$ for all natural numbers $n$ and for all real numbers $x > -1$.


Proof: Using Mathematical Induction (Bernoulli's Inequality)

Let $P(n)$ be the statement "$(1 + x)^n \ge (1 + nx)$".

Base Case (n=1):

For $n=1$, the inequality becomes:

$(1 + x)^1 \ge (1 + 1 \cdot x)$

$1 + x \ge 1 + x$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$(1 + x)^k \ge (1 + kx)$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that $(1 + x)^{k+1} \ge (1 + (k+1)x)$.

Consider the left side of the inequality for $n=k+1$:

$(1 + x)^{k+1} = (1 + x)^k (1 + x)$

From the induction hypothesis, we have $(1 + x)^k \ge (1 + kx)$.

Since $x > -1$, we know that $1 + x > 0$. We can multiply both sides of the induction hypothesis by $(1 + x)$ without reversing the inequality sign:

$(1 + x)^k (1 + x) \ge (1 + kx)(1 + x)$

Expanding the right side:

$(1 + x)^{k+1} \ge 1 \cdot (1+x) + kx \cdot (1+x)$

$(1 + x)^{k+1} \ge 1 + x + kx + kx^2$

$(1 + x)^{k+1} \ge 1 + (k+1)x + kx^2$

We want to show that $(1 + x)^{k+1} \ge 1 + (k+1)x$. From the previous step, we have $(1 + x)^{k+1} \ge 1 + (k+1)x + kx^2$.

So, we need to compare $1 + (k+1)x + kx^2$ with $1 + (k+1)x$.

The difference is $kx^2$.

Since $k$ is a natural number, $k \ge 1$.

Since $x$ is a real number, $x^2 \ge 0$ (the square of any real number is non-negative).

Therefore, the product $kx^2$ must be non-negative, i.e., $kx^2 \ge 0$.

Thus, $1 + (k+1)x + kx^2 \ge 1 + (k+1)x$ because $kx^2$ is non-negative.

Combining the inequalities, we have:

$(1 + x)^{k+1} \ge 1 + (k+1)x + kx^2 \ge 1 + (k+1)x$

Therefore, $(1 + x)^{k+1} \ge 1 + (k+1)x$. This shows that $P(k+1)$ is true.

Conclusion:

By the principle of mathematical induction, the inequality $(1 + x)^n \ge (1 + nx)$ is true for all natural numbers $n$ and for all real numbers $x > -1$.

Example 6: Prove that

2.7n + 3.5n – 5 is divisible by 24, for all n ∈ N.

Answer:

Given:

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

To Prove:

$2 \cdot 7^n + 3 \cdot 5^n – 5$ is divisible by 24 for all $n \in \mathbb{N}$.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$2 \cdot 7^n + 3 \cdot 5^n – 5$ is divisible by 24".

Base Case (n=1):

For $n=1$, the expression is:

$2 \cdot 7^1 + 3 \cdot 5^1 - 5 = 2 \cdot 7 + 3 \cdot 5 - 5$

$= 14 + 15 - 5$

$= 29 - 5$

$= 24$

Since 24 is divisible by 24, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume $2 \cdot 7^k + 3 \cdot 5^k - 5$ is divisible by 24.

This means there exists an integer $m$ such that:

$2 \cdot 7^k + 3 \cdot 5^k - 5 = 24m$

From this, we can express $2 \cdot 7^k$ as:

$2 \cdot 7^k = 24m - 3 \cdot 5^k + 5$

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., $2 \cdot 7^{k+1} + 3 \cdot 5^{k+1} - 5$ is divisible by 24.

Consider the expression for $n=k+1$:

$2 \cdot 7^{k+1} + 3 \cdot 5^{k+1} - 5$

We can rewrite the terms:

$= 2 \cdot 7 \cdot 7^k + 3 \cdot 5 \cdot 5^k - 5$

$= 14 \cdot 7^k + 15 \cdot 5^k - 5$

Now, we use the induction hypothesis $2 \cdot 7^k = 24m - 3 \cdot 5^k + 5$. To use this, we can rewrite $14 \cdot 7^k$ as $7 \cdot (2 \cdot 7^k)$.

$= 7 \cdot (2 \cdot 7^k) + 15 \cdot 5^k - 5$

Substitute the expression for $2 \cdot 7^k$ from the induction hypothesis:

$= 7 (24m - 3 \cdot 5^k + 5) + 15 \cdot 5^k - 5$

Expand the expression:

$= 7 \cdot 24m - 7 \cdot 3 \cdot 5^k + 7 \cdot 5 + 15 \cdot 5^k - 5$

$= 168m - 21 \cdot 5^k + 35 + 15 \cdot 5^k - 5$

Group the terms with $5^k$ and the constant terms:

$= 168m + (-21 + 15) \cdot 5^k + (35 - 5)$

$= 168m - 6 \cdot 5^k + 30$

We need to show this expression is divisible by 24. We know $168m = 24 \cdot 7m$, which is divisible by 24.

We need to show that $-6 \cdot 5^k + 30$ is divisible by 24.

Factor out 6 from the last two terms:

$-6 \cdot 5^k + 30 = -6 (5^k - 5)$

For $-6(5^k - 5)$ to be divisible by 24, $(5^k - 5)$ must be divisible by $\frac{24}{6} = 4$.

Let's prove that $5^k - 5$ is divisible by 4 for all $k \in \mathbb{N}$.

For $k=1$: $5^1 - 5 = 0$, which is divisible by 4.

Assume $5^k - 5$ is divisible by 4 for some natural number $k$. So there exists an integer $p$ such that $5^k - 5 = 4p$. Thus $5^k = 4p + 5$.

Consider $5^{k+1} - 5$:

$5^{k+1} - 5 = 5 \cdot 5^k - 5$

Substitute $5^k = 4p + 5$:

$= 5(4p + 5) - 5$

$= 20p + 25 - 5$

$= 20p + 20$

$= 4(5p + 5)$

Since $p$ is an integer, $5p+5$ is an integer. Thus, $5^{k+1} - 5$ is divisible by 4.

So, by induction, $5^k - 5$ is divisible by 4 for all $k \in \mathbb{N}$.

Therefore, we can write $5^k - 5 = 4q$ for some integer $q$.

Now substitute this back into the expression for $n=k+1$:

$2 \cdot 7^{k+1} + 3 \cdot 5^{k+1} - 5 = 168m - 6(4q)$

$= 168m - 24q$

$= 24(7m - q)$

Since $m$ and $q$ are integers, $7m - q$ is an integer.

Therefore, $2 \cdot 7^{k+1} + 3 \cdot 5^{k+1} - 5$ is divisible by 24.

Thus, $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 2 \cdot 7^n + 3 \cdot 5^n – 5$ is divisible by 24 is true for all natural numbers $n$.

Example 7: Prove that

12 + 22 + … + n2 > $\frac{n^{3}}{n}$, n ∈ N.

Answer:

Given:

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

The inequality $1^2 + 2^2 + \dots + n^2 > \frac{n^3}{n}$.

Note on the inequality: The inequality as stated, $1^2 + 2^2 + \dots + n^2 > \frac{n^3}{n}$, simplifies to $1^2 + 2^2 + \dots + n^2 > n^2$ for $n \ge 1$. This simplified inequality is false for $n=1$, as $1^2 = 1$ and $1^2 = 1$, so $1 > 1$ is false. It is true for $n \ge 2$. Assuming the question intends a statement that is true for all natural numbers $n \ge 1$, there might be a typo in the inequality. A common related inequality is $1^2 + 2^2 + \dots + n^2 > \frac{n^3}{3}$, which is true for all natural numbers $n \ge 1$. We will provide the proof for the inequality $1^2 + 2^2 + \dots + n^2 > \frac{n^3}{3}$.

To Prove:

$1^2 + 2^2 + \dots + n^2 \ge \frac{n^3}{3}$ for all natural numbers $n$.

Actually, the strict inequality $1^2 + 2^2 + \dots + n^2 > \frac{n^3}{3}$ holds, so we will prove that.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1^2 + 2^2 + \dots + n^2 > \frac{n^3}{3}$".

Base Case (n=1):

For $n=1$, the left side of the inequality is:

LHS $= 1^2 = 1$

The right side of the inequality is:

RHS $= \frac{1^3}{3} = \frac{1}{3}$

Comparing LHS and RHS:

$1 > \frac{1}{3}$

Since $1 > \frac{1}{3}$, the statement $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1^2 + 2^2 + \dots + k^2 > \frac{k^3}{3}$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that $1^2 + 2^2 + \dots + (k+1)^2 > \frac{(k+1)^3}{3}$.

Consider the left side of the inequality for $n=k+1$:

$1^2 + 2^2 + \dots + k^2 + (k+1)^2$

Using the induction hypothesis, $1^2 + 2^2 + \dots + k^2 > \frac{k^3}{3}$. So, we can write:

$1^2 + 2^2 + \dots + k^2 + (k+1)^2 > \frac{k^3}{3} + (k+1)^2$

Now, we need to show that $\frac{k^3}{3} + (k+1)^2 > \frac{(k+1)^3}{3}$.

Let's expand and simplify the inequality $\frac{k^3}{3} + (k+1)^2 > \frac{(k+1)^3}{3}$:

$\frac{k^3}{3} + (k^2 + 2k + 1) > \frac{k^3 + 3k^2 + 3k + 1}{3}$

Multiply both sides by 3:

$3 \left( \frac{k^3}{3} + k^2 + 2k + 1 \right) > 3 \left( \frac{k^3 + 3k^2 + 3k + 1}{3} \right)$

$k^3 + 3k^2 + 6k + 3 > k^3 + 3k^2 + 3k + 1$

Subtract $k^3 + 3k^2 + 3k + 1$ from both sides of the inequality:

$(k^3 + 3k^2 + 6k + 3) - (k^3 + 3k^2 + 3k + 1) > 0$

$(k^3 - k^3) + (3k^2 - 3k^2) + (6k - 3k) + (3 - 1) > 0$

$0 + 0 + 3k + 2 > 0$

$3k + 2 > 0$

Since $k$ is a natural number, $k \ge 1$. This means $3k \ge 3$. Therefore, $3k + 2 \ge 3 + 2 = 5$.

Since $5 > 0$, the inequality $3k + 2 > 0$ is true for all natural numbers $k$.

This confirms that $\frac{k^3}{3} + (k+1)^2 > \frac{(k+1)^3}{3}$ is true for all natural numbers $k$.

Combining this result with the previous step:

$1^2 + 2^2 + \dots + (k+1)^2 > \frac{k^3}{3} + (k+1)^2$

and we just showed that $\frac{k^3}{3} + (k+1)^2 > \frac{(k+1)^3}{3}$.

Therefore, by the transitive property of inequalities, we have:

$1^2 + 2^2 + \dots + (k+1)^2 > \frac{(k+1)^3}{3}$

This shows that $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1^2 + 2^2 + \dots + n^2 > \frac{n^3}{3}$ is true for all natural numbers $n$. Given the likely typo in the original question, this proves the intended statement.

Example 8: Prove the rule of exponents (ab) n = anbn by using principle of mathematical induction for every natural number.

Answer:

Given:

The rule of exponents $(ab)^n = a^n b^n$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

$a$ and $b$ are any real numbers.

To Prove:

$(ab)^n = a^n b^n$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$(ab)^n = a^n b^n$".

Base Case (n=1):

For $n=1$, the left side of the statement is:

LHS $= (ab)^1 = ab$

The right side of the statement is:

RHS $= a^1 b^1 = ab$

Comparing LHS and RHS:

$ab = ab$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$(ab)^k = a^k b^k$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that $(ab)^{k+1} = a^{k+1} b^{k+1}$.

Consider the left side of the statement for $n=k+1$:

LHS $= (ab)^{k+1}$

Using the definition of exponents, we can write $(ab)^{k+1}$ as:

$(ab)^{k+1} = (ab)^k \cdot (ab)^1$

$(ab)^{k+1} = (ab)^k \cdot (ab)$

Now, apply the induction hypothesis, which states that $(ab)^k = a^k b^k$:

$(ab)^{k+1} = (a^k b^k) \cdot (ab)$

Using the associative and commutative properties of multiplication, we can rearrange the terms:

$(ab)^{k+1} = a^k \cdot (b^k \cdot a) \cdot b$

$(ab)^{k+1} = a^k \cdot (a \cdot b^k) \cdot b$

$(ab)^{k+1} = (a^k \cdot a) \cdot (b^k \cdot b)$

Using the definition of exponents again, $a^k \cdot a = a^{k+1}$ and $b^k \cdot b = b^{k+1}$:

$(ab)^{k+1} = a^{k+1} b^{k+1}$

This is the right side of the statement for $n=k+1$ (RHS $= a^{k+1} b^{k+1}$).

Since LHS = RHS, the statement $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): (ab)^n = a^n b^n$ is true for all natural numbers $n$.



Exercise 4.1

Prove the following by using the principle of mathematical induction for all n ∈ N:

Question 1. 1 + 3 + 32 + … + 3n - 1 = $\frac{(3^{n}\;-\;1)}{2}$ .

Answer:

Given:

The statement $1 + 3 + 3^2 + \dots + 3^{n - 1} = \frac{(3^n - 1)}{2}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

To Prove:

$1 + 3 + 3^2 + \dots + 3^{n - 1} = \frac{(3^n - 1)}{2}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1 + 3 + 3^2 + \dots + 3^{n - 1} = \frac{(3^n - 1)}{2}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the sum up to the term $3^{1-1} = 3^0 = 1$.

LHS $= 1$

The right side of the statement for $n=1$ is:

RHS $= \frac{(3^1 - 1)}{2} = \frac{3 - 1}{2} = \frac{2}{2} = 1$

Comparing LHS and RHS:

$1 = 1$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1 + 3 + 3^2 + \dots + 3^{k - 1} = \frac{(3^k - 1)}{2}$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that $1 + 3 + 3^2 + \dots + 3^{(k+1) - 1} = \frac{(3^{k+1} - 1)}{2}$.

The term $3^{(k+1) - 1}$ is $3^k$. The statement for $n=k+1$ is $1 + 3 + 3^2 + \dots + 3^{k - 1} + 3^k = \frac{(3^{k+1} - 1)}{2}$.

Consider the left side of the statement for $n=k+1$:

LHS $= (1 + 3 + 3^2 + \dots + 3^{k - 1}) + 3^k$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\frac{(3^k - 1)}{2}$:

LHS $= \frac{(3^k - 1)}{2} + 3^k$

Now, we simplify the expression to match the RHS for $n=k+1$:

LHS $= \frac{3^k - 1 + 2 \cdot 3^k}{2}$

LHS $= \frac{3^k + 2 \cdot 3^k - 1}{2}$

LHS $= \frac{(1 + 2) \cdot 3^k - 1}{2}$

LHS $= \frac{3 \cdot 3^k - 1}{2}$

Using the rule of exponents $a^m \cdot a^n = a^{m+n}$:

LHS $= \frac{3^{1} \cdot 3^k - 1}{2} = \frac{3^{1+k} - 1}{2} = \frac{3^{k+1} - 1}{2}$

This is the right side of the statement for $n=k+1$ (RHS $= \frac{(3^{k+1} - 1)}{2}$).

Since LHS = RHS, the statement $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1 + 3 + 3^2 + \dots + 3^{n - 1} = \frac{(3^n - 1)}{2}$ is true for all natural numbers $n$.

Question 2. 13 + 23 + 33 + … + n3 = $\left( \frac{n(n\;+\;1)}{2} \right)^2$ .

Answer:

Given:

The statement $1^3 + 2^3 + 3^3 + \dots + n^3 = \left( \frac{n(n+1)}{2} \right)^2$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

To Prove:

$1^3 + 2^3 + 3^3 + \dots + n^3 = \left( \frac{n(n+1)}{2} \right)^2$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1^3 + 2^3 + \dots + n^3 = \left( \frac{n(n+1)}{2} \right)^2$".

Base Case (n=1):

For $n=1$, the left side of the statement is:

LHS $= 1^3 = 1$

The right side of the statement for $n=1$ is:

RHS $= \left( \frac{1(1+1)}{2} \right)^2 = \left( \frac{1(2)}{2} \right)^2 = \left( \frac{2}{2} \right)^2 = 1^2 = 1$

Comparing LHS and RHS:

$1 = 1$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1^3 + 2^3 + 3^3 + \dots + k^3 = \left( \frac{k(k+1)}{2} \right)^2$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that $1^3 + 2^3 + 3^3 + \dots + (k+1)^3 = \left( \frac{(k+1)((k+1)+1)}{2} \right)^2 = \left( \frac{(k+1)(k+2)}{2} \right)^2$.

Consider the left side of the statement for $n=k+1$:

LHS $= (1^3 + 2^3 + 3^3 + \dots + k^3) + (k+1)^3$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\left( \frac{k(k+1)}{2} \right)^2$:

LHS $= \left( \frac{k(k+1)}{2} \right)^2 + (k+1)^3$

Now, we simplify the expression:

LHS $= \frac{k^2(k+1)^2}{4} + (k+1)^3$

To combine the terms, find a common denominator (4):

LHS $= \frac{k^2(k+1)^2}{4} + \frac{4(k+1)^3}{4}$

Factor out the common term $(k+1)^2$ from the numerator:

LHS $= \frac{(k+1)^2 [k^2 + 4(k+1)]}{4}$

Expand the term inside the square brackets:

LHS $= \frac{(k+1)^2 [k^2 + 4k + 4]}{4}$

Recognize that $k^2 + 4k + 4$ is a perfect square trinomial, specifically $(k+2)^2$:

LHS $= \frac{(k+1)^2 (k+2)^2}{4}$

We can rewrite the denominator as $2^2$:

LHS $= \frac{(k+1)^2 (k+2)^2}{2^2}$

Using the rule of exponents $\frac{a^m b^m}{c^m} = \left( \frac{ab}{c} \right)^m$:

LHS $= \left( \frac{(k+1)(k+2)}{2} \right)^2$

This is the right side of the statement for $n=k+1$ (RHS $= \left( \frac{(k+1)(k+2)}{2} \right)^2$).

Since LHS = RHS, the statement $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1^3 + 2^3 + 3^3 + \dots + n^3 = \left( \frac{n(n+1)}{2} \right)^2$ is true for all natural numbers $n$.

Question 3. 1 + $\frac{1}{(1 \;+\; 2)}$ + $\frac{1}{(1 \;+\; 2 \;+\; 3)}$ + … + $\frac{1}{(1 \;+\; 2 \;+\; 3 \;+\; …\;n)}$ = $\frac{2n}{(n \;+\; 1)}$ .

Answer:

Given:

The statement $1 + \frac{1}{(1 + 2)} + \frac{1}{(1 + 2 + 3)} + \dots + \frac{1}{(1 + 2 + 3 + \dots + n)} = \frac{2n}{(n + 1)}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

To Prove:

$1 + \frac{1}{(1 + 2)} + \frac{1}{(1 + 2 + 3)} + \dots + \frac{1}{(1 + 2 + 3 + \dots + n)} = \frac{2n}{(n + 1)}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1 + \frac{1}{(1 + 2)} + \frac{1}{(1 + 2 + 3)} + \dots + \frac{1}{(1 + 2 + 3 + \dots + n)} = \frac{2n}{(n + 1)}$".

The sum of the first $r$ natural numbers is $1 + 2 + \dots + r = \frac{r(r+1)}{2}$. So, the $r$-th term in the sum is $\frac{1}{\frac{r(r+1)}{2}} = \frac{2}{r(r+1)}$.

Thus, $P(n)$ can be written as: $\sum\limits_{r=1}^{n} \frac{2}{r(r+1)} = \frac{2n}{n+1}$.

Base Case (n=1):

For $n=1$, the left side of the statement is the first term, $r=1$.

LHS $= 1$.

The right side of the statement for $n=1$ is:

RHS $= \frac{2 \cdot 1}{(1 + 1)} = \frac{2}{2} = 1$.

Comparing LHS and RHS:

$1 = 1$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1 + \frac{1}{(1 + 2)} + \frac{1}{(1 + 2 + 3)} + \dots + \frac{1}{(1 + 2 + 3 + \dots + k)} = \frac{2k}{(k + 1)}$

This can be written as $\sum\limits_{r=1}^{k} \frac{2}{r(r+1)} = \frac{2k}{k+1}$.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$1 + \frac{1}{(1 + 2)} + \dots + \frac{1}{(1 + 2 + \dots + k)} + \frac{1}{(1 + 2 + \dots + (k+1))} = \frac{2(k+1)}{((k+1) + 1)} = \frac{2(k+1)}{(k + 2)}$.

Consider the left side of the statement for $n=k+1$:

LHS $= \left( 1 + \frac{1}{(1 + 2)} + \dots + \frac{1}{(1 + 2 + \dots + k)} \right) + \frac{1}{(1 + 2 + \dots + (k+1))}$

Using the induction hypothesis, replace the sum in the parenthesis:

LHS $= \frac{2k}{(k + 1)} + \frac{1}{(1 + 2 + \dots + (k+1))}$

The denominator of the last term is the sum of the first $(k+1)$ natural numbers:

$1 + 2 + \dots + (k+1) = \frac{(k+1)((k+1)+1)}{2} = \frac{(k+1)(k+2)}{2}$.

So, the last term is $\frac{1}{\frac{(k+1)(k+2)}{2}} = \frac{2}{(k+1)(k+2)}$.

Substitute this into the expression for LHS:

LHS $= \frac{2k}{(k + 1)} + \frac{2}{(k+1)(k+2)}$

Combine the fractions by finding a common denominator $(k+1)(k+2)$:

LHS $= \frac{2k(k+2)}{(k + 1)(k+2)} + \frac{2}{(k+1)(k+2)}$

LHS $= \frac{2k(k+2) + 2}{(k+1)(k+2)}$

Expand the numerator:

Numerator $= 2k^2 + 4k + 2$

Factor out 2 from the numerator:

Numerator $= 2(k^2 + 2k + 1)$

Recognize the perfect square trinomial $k^2 + 2k + 1 = (k+1)^2$:

Numerator $= 2(k+1)^2$

Substitute the factored numerator back into the LHS expression:

LHS $= \frac{2(k+1)^2}{(k+1)(k+2)}$

Cancel out one factor of $(k+1)$ from the numerator and denominator (since $k \in \mathbb{N}$, $k+1 \ne 0$):

LHS $= \frac{2(k+1)}{(k+2)}$

This is the right side of the statement for $n=k+1$ (RHS $= \frac{2(k+1)}{(k+2)}$).

Since LHS = RHS, the statement $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1 + \frac{1}{(1 + 2)} + \frac{1}{(1 + 2 + 3)} + \dots + \frac{1}{(1 + 2 + 3 + \dots + n)} = \frac{2n}{(n + 1)}$ is true for all natural numbers $n$.

Question 4. 1.2.3 + 2.3.4 +…+ n(n + 1) (n + 2) = $\frac{n(n \;+\; 1) (n \;+\; 2) (n \;+\; 3)}{4}$ .

Answer:

Given:

The statement $1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n + 1)(n + 2) = \frac{n(n + 1)(n + 2)(n + 3)}{4}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

To Prove:

$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n + 1)(n + 2) = \frac{n(n + 1)(n + 2)(n + 3)}{4}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n + 1)(n + 2) = \frac{n(n + 1)(n + 2)(n + 3)}{4}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= 1 \cdot (1+1) \cdot (1+2) = 1 \cdot 2 \cdot 3 = 6$

The right side of the statement for $n=1$ is:

RHS $= \frac{1(1+1)(1+2)(1+3)}{4} = \frac{1 \cdot 2 \cdot 3 \cdot 4}{4} = \frac{24}{4} = 6$

Comparing LHS and RHS:

$6 = 6$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + k(k+1)(k+2) = \frac{k(k+1)(k+2)(k+3)}{4}$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + (k+1)((k+1)+1)((k+1)+2) = \frac{(k+1)((k+1)+1)((k+1)+2)((k+1)+3)}{4}$

This simplifies to showing:

$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + (k+1)(k+2)(k+3) = \frac{(k+1)(k+2)(k+3)(k+4)}{4}$.

Consider the left side of the statement for $n=k+1$:

LHS $= (1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + k(k+1)(k+2)) + (k+1)(k+2)(k+3)$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\frac{k(k+1)(k+2)(k+3)}{4}$:

LHS $= \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3)$

Now, we simplify the expression. Factor out the common term $(k+1)(k+2)(k+3)$:

LHS $= (k+1)(k+2)(k+3) \left( \frac{k}{4} + 1 \right)$

Combine the terms inside the parenthesis:

LHS $= (k+1)(k+2)(k+3) \left( \frac{k}{4} + \frac{4}{4} \right)$

LHS $= (k+1)(k+2)(k+3) \left( \frac{k+4}{4} \right)$

Rewrite the expression:

LHS $= \frac{(k+1)(k+2)(k+3)(k+4)}{4}$

This is the right side of the statement for $n=k+1$ (RHS $= \frac{(k+1)(k+2)(k+3)(k+4)}{4}$).

Since LHS = RHS, the statement $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n + 1)(n + 2) = \frac{n(n + 1)(n + 2)(n + 3)}{4}$ is true for all natural numbers $n$.

Question 5. 1.3 + 2.32 + 3.33 +…+ n.3n = $\frac{(2n\;-\;1)3^{n+1}\;+\;3}{4}$ .

Answer:

Given:

The statement $1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^n = \frac{(2n - 1)3^{n+1} + 3}{4}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

To Prove:

$1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^n = \frac{(2n - 1)3^{n+1} + 3}{4}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^n = \frac{(2n - 1)3^{n+1} + 3}{4}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= 1 \cdot 3^1 = 3$

The right side of the statement for $n=1$ is:

RHS $= \frac{(2 \cdot 1 - 1)3^{1+1} + 3}{4} = \frac{(2 - 1)3^2 + 3}{4} = \frac{1 \cdot 9 + 3}{4} = \frac{9 + 3}{4} = \frac{12}{4} = 3$

Comparing LHS and RHS:

$3 = 3$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + k \cdot 3^k = \frac{(2k - 1)3^{k+1} + 3}{4}$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$1 \cdot 3 + 2 \cdot 3^2 + \dots + k \cdot 3^k + (k+1) \cdot 3^{k+1} = \frac{(2(k+1) - 1)3^{(k+1)+1} + 3}{4}$

This simplifies to showing:

$1 \cdot 3 + 2 \cdot 3^2 + \dots + k \cdot 3^k + (k+1) \cdot 3^{k+1} = \frac{(2k + 1)3^{k+2} + 3}{4}$.

Consider the left side of the statement for $n=k+1$:

LHS $= (1 \cdot 3 + 2 \cdot 3^2 + \dots + k \cdot 3^k) + (k+1) \cdot 3^{k+1}$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\frac{(2k - 1)3^{k+1} + 3}{4}$:

LHS $= \frac{(2k - 1)3^{k+1} + 3}{4} + (k+1) \cdot 3^{k+1}$

Now, we simplify the expression:

LHS $= \frac{(2k - 1)3^{k+1} + 3 + 4(k+1) \cdot 3^{k+1}}{4}$

LHS $= \frac{(2k - 1)3^{k+1} + 4(k+1)3^{k+1} + 3}{4}$

Factor out $3^{k+1}$ from the terms containing it in the numerator:

LHS $= \frac{3^{k+1} [(2k - 1) + 4(k+1)] + 3}{4}$

Simplify the expression inside the square brackets:

$ (2k - 1) + 4(k+1) = 2k - 1 + 4k + 4 = 6k + 3 $

Substitute this back into the LHS expression:

LHS $= \frac{3^{k+1} (6k + 3) + 3}{4}$

Factor out 3 from $(6k + 3)$:

LHS $= \frac{3^{k+1} \cdot 3(2k + 1) + 3}{4}$

Using the rule of exponents $a^m \cdot a^n = a^{m+n}$ ($3^{k+1} \cdot 3 = 3^{k+1+1} = 3^{k+2}$):

LHS $= \frac{3^{k+2} (2k + 1) + 3}{4}$

Rearranging the terms in the numerator:

LHS $= \frac{(2k + 1)3^{k+2} + 3}{4}$

This is the right side of the statement for $n=k+1$ (RHS $= \frac{(2k + 1)3^{k+2} + 3}{4}$).

Since LHS = RHS, the statement $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^n = \frac{(2n - 1)3^{n+1} + 3}{4}$ is true for all natural numbers $n$.

Question 6. 1.2 + 2.3 + 3.4 +…+ n.(n + 1) = $\left[ \frac{n(n+1)(n+2)}{3} \right]$

Answer:

Given:

The statement $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

To Prove:

$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= 1 \cdot (1+1) = 1 \cdot 2 = 2$

The right side of the statement for $n=1$ is:

RHS $= \frac{1(1+1)(1+2)}{3} = \frac{1 \cdot 2 \cdot 3}{3} = \frac{6}{3} = 2$

Comparing LHS and RHS:

$2 = 2$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + k(k+1) = \frac{k(k+1)(k+2)}{3}$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + (k+1)((k+1)+1) = \frac{(k+1)((k+1)+1)((k+1)+2)}{3}$

This simplifies to showing:

$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + (k+1)(k+2) = \frac{(k+1)(k+2)(k+3)}{3}$.

Consider the left side of the statement for $n=k+1$:

LHS $= (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + k(k+1)) + (k+1)(k+2)$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\frac{k(k+1)(k+2)}{3}$:

LHS $= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$

Now, we simplify the expression. Factor out the common term $(k+1)(k+2)$:

LHS $= (k+1)(k+2) \left( \frac{k}{3} + 1 \right)$

Combine the terms inside the parenthesis:

LHS $= (k+1)(k+2) \left( \frac{k}{3} + \frac{3}{3} \right)$

LHS $= (k+1)(k+2) \left( \frac{k+3}{3} \right)$

Rewrite the expression:

LHS $= \frac{(k+1)(k+2)(k+3)}{3}$

This is the right side of the statement for $n=k+1$ (RHS $= \frac{(k+1)(k+2)(k+3)}{3}$).

Since LHS = RHS, the statement $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$ is true for all natural numbers $n$.

Question 7. 1.3 + 3.5 + 5.7 +…+ (2n – 1) (2n + 1) = $\frac{n(4n^{2}+6n-1)}{3}$

Answer:

Given:

The statement $1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2n - 1)(2n + 1) = \frac{n(4n^2 + 6n - 1)}{3}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

To Prove:

$1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2n - 1)(2n + 1) = \frac{n(4n^2 + 6n - 1)}{3}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2n - 1)(2n + 1) = \frac{n(4n^2 + 6n - 1)}{3}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= (2 \cdot 1 - 1)(2 \cdot 1 + 1) = (2 - 1)(2 + 1) = 1 \cdot 3 = 3$

The right side of the statement for $n=1$ is:

RHS $= \frac{1(4(1)^2 + 6(1) - 1)}{3} = \frac{1(4 + 6 - 1)}{3} = \frac{1(9)}{3} = \frac{9}{3} = 3$

Comparing LHS and RHS:

$3 = 3$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2k - 1)(2k + 1) = \frac{k(4k^2 + 6k - 1)}{3}$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$1 \cdot 3 + 3 \cdot 5 + \dots + (2k - 1)(2k + 1) + (2(k+1) - 1)(2(k+1) + 1) = \frac{(k+1)(4(k+1)^2 + 6(k+1) - 1)}{3}$.

The $(k+1)$-th term is $(2(k+1) - 1)(2(k+1) + 1) = (2k + 2 - 1)(2k + 2 + 1) = (2k + 1)(2k + 3)$.

Consider the left side of the statement for $n=k+1$:

LHS $= (1 \cdot 3 + 3 \cdot 5 + \dots + (2k - 1)(2k + 1)) + (2k + 1)(2k + 3)$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\frac{k(4k^2 + 6k - 1)}{3}$:

LHS $= \frac{k(4k^2 + 6k - 1)}{3} + (2k + 1)(2k + 3)$

Now, we simplify the expression:

LHS $= \frac{k(4k^2 + 6k - 1) + 3(2k + 1)(2k + 3)}{3}$

Expand the terms in the numerator:

$k(4k^2 + 6k - 1) = 4k^3 + 6k^2 - k$

$3(2k + 1)(2k + 3) = 3(4k^2 + 6k + 2k + 3) = 3(4k^2 + 8k + 3) = 12k^2 + 24k + 9$

Add the expanded terms in the numerator:

Numerator $= (4k^3 + 6k^2 - k) + (12k^2 + 24k + 9) = 4k^3 + 18k^2 + 23k + 9$

So, LHS $= \frac{4k^3 + 18k^2 + 23k + 9}{3}$.

Now, consider the right side of the statement for $n=k+1$:

RHS $= \frac{(k+1)(4(k+1)^2 + 6(k+1) - 1)}{3}$

Expand the terms inside the parenthesis:

$(k+1)^2 = k^2 + 2k + 1$

$4(k+1)^2 = 4(k^2 + 2k + 1) = 4k^2 + 8k + 4$

$6(k+1) = 6k + 6$

RHS $= \frac{(k+1)(4k^2 + 8k + 4 + 6k + 6 - 1)}{3}$

RHS $= \frac{(k+1)(4k^2 + 14k + 9)}{3}$

Expand the numerator:

$(k+1)(4k^2 + 14k + 9) = k(4k^2 + 14k + 9) + 1(4k^2 + 14k + 9)$

$= 4k^3 + 14k^2 + 9k + 4k^2 + 14k + 9$

$= 4k^3 + 18k^2 + 23k + 9$

So, RHS $= \frac{4k^3 + 18k^2 + 23k + 9}{3}$.

Comparing the simplified LHS and RHS:

LHS $= \frac{4k^3 + 18k^2 + 23k + 9}{3}$

RHS $= \frac{4k^3 + 18k^2 + 23k + 9}{3}$

Since LHS = RHS, the statement $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2n - 1)(2n + 1) = \frac{n(4n^2 + 6n - 1)}{3}$ is true for all natural numbers $n$.

Question 8. 1.2 + 2.22 + 3.23 + ...+ n.2n = (n – 1) 2n + 1 + 2 .

Answer:

Given:

The statement $1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n \cdot 2^n = (n - 1) 2^{n + 1} + 2$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

To Prove:

$1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n \cdot 2^n = (n - 1) 2^{n + 1} + 2$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n \cdot 2^n = (n - 1) 2^{n + 1} + 2$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= 1 \cdot 2^1 = 2$

The right side of the statement for $n=1$ is:

RHS $= (1 - 1) 2^{1 + 1} + 2 = 0 \cdot 2^2 + 2 = 0 \cdot 4 + 2 = 0 + 2 = 2$

Comparing LHS and RHS:

$2 = 2$

This is true. So, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + k \cdot 2^k = (k - 1) 2^{k + 1} + 2$

This is our induction hypothesis.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + (k+1) \cdot 2^{k+1} = ((k+1) - 1) 2^{(k+1) + 1} + 2$

This simplifies to showing:

$1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + (k+1) \cdot 2^{k+1} = k \cdot 2^{k + 2} + 2$.

Consider the left side of the statement for $n=k+1$:

LHS $= (1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + k \cdot 2^k) + (k+1) \cdot 2^{k+1}$

Using the induction hypothesis, we can replace the sum in the parenthesis with $(k - 1) 2^{k + 1} + 2$:

LHS $= ((k - 1) 2^{k + 1} + 2) + (k+1) \cdot 2^{k+1}$

Group the terms containing $2^{k+1}$:

LHS $= (k - 1) 2^{k + 1} + (k+1) 2^{k + 1} + 2$

Factor out the common term $2^{k+1}$:

LHS $= 2^{k + 1} [(k - 1) + (k+1)] + 2$

Simplify the expression inside the square brackets:

$(k - 1) + (k+1) = k - 1 + k + 1 = 2k$

Substitute this back into the expression for LHS:

LHS $= 2^{k + 1} (2k) + 2$

LHS $= 2k \cdot 2^{k + 1} + 2$

Using the rule of exponents $a^m \cdot a^n = a^{m+n}$, $2 \cdot 2^{k+1} = 2^1 \cdot 2^{k+1} = 2^{1+(k+1)} = 2^{k+2}$.

LHS $= k \cdot (2 \cdot 2^{k + 1}) + 2$

LHS $= k \cdot 2^{k + 2} + 2$

This is the right side of the statement for $n=k+1$ (RHS $= k \cdot 2^{k + 2} + 2$).

Since LHS = RHS, the statement $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n \cdot 2^n = (n - 1) 2^{n + 1} + 2$ is true for all natural numbers $n$.

Question 9. $\frac{1}{2}$ + $\frac{1}{4}$ + $\frac{1}{8}$ + … + $\frac{1}{2^{n}}$ = 1 - $\frac{1}{2^{n}}$

Answer:

Given:

The statement $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n}} = 1 - \frac{1}{2^{n}}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n}} = 1 - \frac{1}{2^{n}}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n}} = 1 - \frac{1}{2^{n}}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= \frac{1}{2^1} = \frac{1}{2}$

The right side of the statement for $n=1$ is:

RHS $= 1 - \frac{1}{2^1} = 1 - \frac{1}{2} = \frac{1}{2}$

Comparing LHS and RHS:

$\frac{1}{2} = \frac{1}{2}$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{k}} = 1 - \frac{1}{2^{k}}$


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{k}} + \frac{1}{2^{k+1}} = 1 - \frac{1}{2^{k+1}}$

Consider the left side of the statement for $n=k+1$:

LHS $= \left( \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{k}} \right) + \frac{1}{2^{k+1}}$

Using the induction hypothesis, we can replace the sum in the parenthesis with $1 - \frac{1}{2^{k}}$:

LHS $= \left( 1 - \frac{1}{2^{k}} \right) + \frac{1}{2^{k+1}}$

Now, we simplify the expression:

LHS $= 1 - \frac{1}{2^{k}} + \frac{1}{2^{k+1}}$

To combine the fractions, rewrite $\frac{1}{2^k}$ with denominator $2^{k+1}$:

$\frac{1}{2^k} = \frac{1 \cdot 2}{2^k \cdot 2} = \frac{2}{2^{k+1}}$

Substitute this back into the expression for LHS:

LHS $= 1 - \frac{2}{2^{k+1}} + \frac{1}{2^{k+1}}$

Combine the fractions:

LHS $= 1 + \frac{-2 + 1}{2^{k+1}}$

LHS $= 1 + \frac{-1}{2^{k+1}}$

LHS $= 1 - \frac{1}{2^{k+1}}$

This is the right side of the statement for $n=k+1$ (RHS $= 1 - \frac{1}{2^{k+1}}$).

Since LHS = RHS, the statement $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n}} = 1 - \frac{1}{2^{n}}$ is true for all natural numbers $n$.

Question 10. $\frac{1}{2.5}$ + $\frac{1}{5.8}$ + $\frac{1}{8.11}$ + … + $\frac{1}{(3n \;-\; 1) (3n \;+\; 2)}$ = $\frac{n}{(6n \;+\; 4)}$

Answer:

Given:

The statement $\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \dots + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \dots + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \dots + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= \frac{1}{(3 \cdot 1 - 1)(3 \cdot 1 + 2)} = \frac{1}{(3 - 1)(3 + 2)} = \frac{1}{2 \cdot 5} = \frac{1}{10}$

The right side of the statement for $n=1$ is:

RHS $= \frac{1}{6 \cdot 1 + 4} = \frac{1}{6 + 4} = \frac{1}{10}$

Comparing LHS and RHS:

$\frac{1}{10} = \frac{1}{10}$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \dots + \frac{1}{(3k - 1)(3k + 2)} = \frac{k}{6k + 4}$


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \dots + \frac{1}{(3(k+1) - 1)(3(k+1) + 2)} = \frac{k+1}{6(k+1) + 4}$

Simplify the $(k+1)$-th term:

$(3(k+1) - 1)(3(k+1) + 2) = (3k + 3 - 1)(3k + 3 + 2) = (3k + 2)(3k + 5)$

The statement for $n=k+1$ is:

$\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \dots + \frac{1}{(3k - 1)(3k + 2)} + \frac{1}{(3k + 2)(3k + 5)} = \frac{k+1}{6k + 10}$.

Consider the left side of the statement for $n=k+1$:

LHS $= \left( \frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \dots + \frac{1}{(3k - 1)(3k + 2)} \right) + \frac{1}{(3k + 2)(3k + 5)}$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\frac{k}{6k + 4}$:

LHS $= \frac{k}{6k + 4} + \frac{1}{(3k + 2)(3k + 5)}$

Factor the denominator $6k + 4 = 2(3k + 2)$:

LHS $= \frac{k}{2(3k + 2)} + \frac{1}{(3k + 2)(3k + 5)}$

Find a common denominator, which is $2(3k + 2)(3k + 5)$:

LHS $= \frac{k \cdot (3k + 5)}{2(3k + 2)(3k + 5)} + \frac{1 \cdot 2}{2(3k + 2)(3k + 5)}$

LHS $= \frac{k(3k + 5) + 2}{2(3k + 2)(3k + 5)}$

Expand and simplify the numerator:

Numerator $= 3k^2 + 5k + 2$

Factor the quadratic numerator $3k^2 + 5k + 2$: $3k^2 + 3k + 2k + 2 = 3k(k+1) + 2(k+1) = (3k+2)(k+1)$

Substitute the factored numerator back into the LHS expression:

LHS $= \frac{(3k + 2)(k + 1)}{2(3k + 2)(3k + 5)}$

Cancel out the common factor $(3k+2)$ (since $k \in \mathbb{N}$, $3k+2$ is never zero):

LHS $= \frac{\cancel{(3k + 2)}(k + 1)}{2\cancel{(3k + 2)}(3k + 5)}$

LHS $= \frac{k + 1}{2(3k + 5)}$

Expand the denominator:

LHS $= \frac{k + 1}{6k + 10}$

This matches the right side of the statement for $n=k+1$ (RHS $= \frac{k+1}{6k + 10}$).

Since LHS = RHS, the statement $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): \frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \dots + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}$ is true for all natural numbers $n$.

Question 11. $\frac{1}{1.2.3.}$ + $\frac{1}{(2.3.4)}$ + $\frac{1}{(3.4.5)}$ + …+ $\frac{1}{n(n \;+\; 1) (n \;+\; 2)}$ = $\frac{n(n \;+\; 3)}{4 (n \;+\; 1) (n \;+\; 2)}$.

Answer:

Given:

The statement $P(n): \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{n(n + 1)(n + 2)} = \frac{n(n + 3)}{4 (n + 1)(n + 2)}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$P(n)$ is true for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$\sum\limits_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{n(n + 3)}{4 (n + 1)(n + 2)}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term ($r=1$):

LHS $= \frac{1}{1 \cdot (1+1) \cdot (1+2)} = \frac{1}{1 \cdot 2 \cdot 3} = \frac{1}{6}$

The right side of the statement for $n=1$ is:

RHS $= \frac{1(1 + 3)}{4 (1 + 1) (1 + 2)} = \frac{1 \cdot 4}{4 \cdot 2 \cdot 3} = \frac{4}{24} = \frac{1}{6}$

Comparing LHS and RHS:

$\frac{1}{6} = \frac{1}{6}$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{k(k + 1)(k + 2)} = \frac{k(k + 3)}{4 (k + 1) (k + 2)}$

This is our induction hypothesis.


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{(k+1)((k+1) + 1)((k+1) + 2)} = \frac{(k+1)((k+1) + 3)}{4 ((k+1) + 1)((k+1) + 2)}$

This simplifies to showing:

$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{(k+1)(k + 2)(k + 3)} = \frac{(k+1)(k + 4)}{4 (k + 2)(k + 3)}$.

Consider the left side of the statement for $n=k+1$:

LHS $= \left( \frac{1}{1 \cdot 2 \cdot 3} + \dots + \frac{1}{k(k + 1)(k + 2)} \right) + \frac{1}{(k+1)(k + 2)(k + 3)}$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\frac{k(k + 3)}{4 (k + 1) (k + 2)}$:

LHS $= \frac{k(k + 3)}{4 (k + 1) (k + 2)} + \frac{1}{(k+1)(k + 2)(k + 3)}$

To combine the fractions, find a common denominator, which is $4(k + 1)(k + 2)(k + 3)$:

LHS $= \frac{k(k + 3) \cdot (k + 3)}{4 (k + 1) (k + 2) \cdot (k + 3)} + \frac{1 \cdot 4}{4 \cdot (k+1)(k + 2)(k + 3)}$

LHS $= \frac{k(k + 3)^2 + 4}{4(k + 1)(k + 2)(k + 3)}$

Expand the numerator:

Numerator $= k(k^2 + 6k + 9) + 4 = k^3 + 6k^2 + 9k + 4$

So, LHS $= \frac{k^3 + 6k^2 + 9k + 4}{4(k + 1)(k + 2)(k + 3)}$.

Now, consider the numerator of the right side of the statement for $n=k+1$:

Target Numerator $= (k+1)(k+4)$

The target denominator for $n=k+1$ is $4(k+2)(k+3)$.

Let's see if the numerator $k^3 + 6k^2 + 9k + 4$ can be factored in a way that helps cancellation to reach the target RHS $\frac{(k+1)(k + 4)}{4 (k + 2)(k + 3)}$.

Let's try factoring $k^3 + 6k^2 + 9k + 4$. If $k=-1$ is a root, then $(-1)^3 + 6(-1)^2 + 9(-1) + 4 = -1 + 6 - 9 + 4 = 0$. So $(k+1)$ is a factor.

Using polynomial division or synthetic division, we find that $k^3 + 6k^2 + 9k + 4 = (k+1)(k^2 + 5k + 4)$.

Factor the quadratic $k^2 + 5k + 4 = (k+1)(k+4)$.

So, the numerator $k^3 + 6k^2 + 9k + 4 = (k+1)(k+1)(k+4) = (k+1)^2(k+4)$.

Substitute the factored numerator back into the LHS expression:

LHS $= \frac{(k+1)^2(k + 4)}{4(k + 1)(k + 2)(k + 3)}$

Cancel out one factor of $(k+1)$ from the numerator and denominator (since $k \in \mathbb{N}$, $k+1 \ne 0$):

LHS $= \frac{\cancel{(k+1)}(k + 1)(k + 4)}{4\cancel{(k + 1)}(k + 2)(k + 3)}$

LHS $= \frac{(k + 1)(k + 4)}{4(k + 2)(k + 3)}$

This is the right side of the statement for $n=k+1$ (RHS $= \frac{(k+1)(k + 4)}{4 (k + 2)(k + 3)}$).

Since LHS = RHS, the statement $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{n(n + 1)(n + 2)} = \frac{n(n + 3)}{4 (n + 1)(n + 2)}$ is true for all natural numbers $n$.

Question 12. a + ar + ar2 +…+ arn-1 = $\frac{a(r^{n}\;-\;1)}{r\;-\;1}$

Answer:

Given:

The statement for the sum of a geometric series $a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

$a$ and $r$ are real numbers, with $r \ne 1$.


To Prove:

$a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= a \cdot r^{1-1} = a \cdot r^0 = a \cdot 1 = a$

The right side of the statement for $n=1$ is:

RHS $= \frac{a(r^1 - 1)}{r - 1} = \frac{a(r - 1)}{r - 1}$

Since we are given $r \ne 1$, $r-1 \ne 0$, so we can cancel $(r-1)$:

RHS $= a$

Comparing LHS and RHS:

$a = a$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$a + ar + ar^2 + \dots + ar^{k-1} = \frac{a(r^k - 1)}{r - 1}$

This is our induction hypothesis.


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$a + ar + ar^2 + \dots + ar^{(k+1)-1} = \frac{a(r^{k+1} - 1)}{r - 1}$

This simplifies to showing:

$a + ar + ar^2 + \dots + ar^{k} = \frac{a(r^{k+1} - 1)}{r - 1}$.

Consider the left side of the statement for $n=k+1$:

LHS $= (a + ar + ar^2 + \dots + ar^{k-1}) + ar^k$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\frac{a(r^k - 1)}{r - 1}$:

LHS $= \frac{a(r^k - 1)}{r - 1} + ar^k$

Now, we simplify the expression. Find a common denominator $(r-1)$:

LHS $= \frac{a(r^k - 1)}{r - 1} + \frac{ar^k (r - 1)}{r - 1}$

LHS $= \frac{a(r^k - 1) + ar^k (r - 1)}{r - 1}$

Expand the numerator:

Numerator $= a \cdot r^k - a \cdot 1 + ar^k \cdot r - ar^k \cdot 1$

Numerator $= ar^k - a + ar^{k+1} - ar^k$

Combine like terms ($ar^k$ and $-ar^k$ cancel out):

Numerator $= ar^{k+1} - a$

Factor out $a$ from the numerator:

Numerator $= a(r^{k+1} - 1)$

Substitute the simplified numerator back into the LHS expression:

LHS $= \frac{a(r^{k+1} - 1)}{r - 1}$

This is the right side of the statement for $n=k+1$ (RHS $= \frac{a(r^{k+1} - 1)}{r - 1}$).

Since LHS = RHS, the statement $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$ is true for all natural numbers $n$, provided $r \ne 1$.

Question 13. $\left( 1+\frac{3}{1} \right) \left( 1+\frac{5}{4} \right) \left( 1+\frac{7}{9} \right) … \left( 1+\frac{(2n \;+\; 1)}{n^{2}} \right) = (n \;+\; 1)^2$ .

Answer:

Given:

The statement $\left( 1+\frac{3}{1} \right) \left( 1+\frac{5}{4} \right) \left( 1+\frac{7}{9} \right) … \left( 1+\frac{(2n \;+\; 1)}{n^{2}} \right) = (n \;+\; 1)^2$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$\left( 1+\frac{3}{1} \right) \left( 1+\frac{5}{4} \right) \left( 1+\frac{7}{9} \right) … \left( 1+\frac{(2n \;+\; 1)}{n^{2}} \right) = (n \;+\; 1)^2$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$\left( 1+\frac{3}{1} \right) \left( 1+\frac{5}{4} \right) \left( 1+\frac{7}{9} \right) … \left( 1+\frac{(2n \;+\; 1)}{n^{2}} \right) = (n \;+\; 1)^2$".

We can rewrite the general term in the product: $1 + \frac{2i + 1}{i^2} = \frac{i^2}{i^2} + \frac{2i + 1}{i^2} = \frac{i^2 + 2i + 1}{i^2} = \frac{(i+1)^2}{i^2}$.

So $P(n)$ can be written as $\prod\limits_{i=1}^{n} \left( 1+\frac{2i \;+\; 1}{i^{2}} \right) = \prod\limits_{i=1}^{n} \frac{(i+1)^{2}}{i^{2}} = (n \;+\; 1)^2$.

Base Case (n=1):

For $n=1$, the left side of the statement is the first term of the product (for $i=1$):

LHS $= \left( 1+\frac{2(1) \;+\; 1}{1^{2}} \right) = \left( 1+\frac{3}{1} \right) = 1 + 3 = 4$

The right side of the statement for $n=1$ is:

RHS $= (1 \;+\; 1)^2 = 2^2 = 4$

Comparing LHS and RHS:

$4 = 4$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$\left( 1+\frac{3}{1} \right) \left( 1+\frac{5}{4} \right) \left( 1+\frac{7}{9} \right) … \left( 1+\frac{(2k \;+\; 1)}{k^{2}} \right) = (k \;+\; 1)^2$

This is our induction hypothesis.


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$\left( 1+\frac{3}{1} \right) \left( 1+\frac{5}{4} \right) \left( 1+\frac{7}{9} \right) … \left( 1+\frac{(2(k+1) \;+\; 1)}{(k+1)^{2}} \right) = ((k+1) \;+\; 1)^2 = (k \;+\; 2)^2$.

The $(k+1)$-th term in the product is $\left( 1+\frac{(2(k+1) \;+\; 1)}{(k+1)^{2}} \right) = \left( 1+\frac{2k+2+1}{(k+1)^{2}} \right) = \left( 1+\frac{2k+3}{(k+1)^{2}} \right)$.

Consider the left side of the statement for $n=k+1$:

LHS $= \left[ \left( 1+\frac{3}{1} \right) \left( 1+\frac{5}{4} \right) … \left( 1+\frac{(2k \;+\; 1)}{k^{2}} \right) \right] \left( 1+\frac{(2(k+1) \;+\; 1)}{(k+1)^{2}} \right)$

Using the induction hypothesis, the product in the square brackets is equal to $(k+1)^2$:

LHS $= (k \;+\; 1)^2 \left( 1+\frac{2k+3}{(k+1)^{2}} \right)$

Simplify the term in the parenthesis:

$1+\frac{2k+3}{(k+1)^{2}} = \frac{(k+1)^2}{(k+1)^2} + \frac{2k+3}{(k+1)^{2}} = \frac{k^2+2k+1+2k+3}{(k+1)^2} = \frac{k^2+4k+4}{(k+1)^2} = \frac{(k+2)^2}{(k+1)^2}$

Substitute this back into the LHS expression:

LHS $= (k \;+\; 1)^2 \cdot \frac{(k+2)^2}{(k+1)^2}$

Since $k \in \mathbb{N}$, $k \ge 1$, so $(k+1)^2 \ne 0$. We can cancel the term $(k+1)^2$:

LHS $= \cancel{(k \;+\; 1)^2} \cdot \frac{(k+2)^2}{\cancel{(k+1)^2}}$

LHS $= (k+2)^2$

This is the right side of the statement for $n=k+1$ (RHS $= (k+2)^2$).

Since LHS = RHS, the statement $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): \left( 1+\frac{3}{1} \right) \left( 1+\frac{5}{4} \right) \left( 1+\frac{7}{9} \right) … \left( 1+\frac{(2n \;+\; 1)}{n^{2}} \right) = (n \;+\; 1)^2$ is true for all natural numbers $n$.

Question 14. $\left( 1+\frac{1}{1} \right) \left( 1+\frac{1}{2} \right) \left( 1+\frac{1}{3} \right) … \left( 1+\frac{1}{n} \right) = (n + 1)$ .

Answer:

Given:

The statement $\left( 1+\frac{1}{1} \right) \left( 1+\frac{1}{2} \right) \left( 1+\frac{1}{3} \right) … \left( 1+\frac{1}{n} \right) = (n + 1)$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$\left( 1+\frac{1}{1} \right) \left( 1+\frac{1}{2} \right) \left( 1+\frac{1}{3} \right) … \left( 1+\frac{1}{n} \right) = (n + 1)$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$\left( 1+\frac{1}{1} \right) \left( 1+\frac{1}{2} \right) \left( 1+\frac{1}{3} \right) … \left( 1+\frac{1}{n} \right) = (n + 1)$".

We can rewrite the general term inside the parentheses: $1 + \frac{1}{i} = \frac{i}{i} + \frac{1}{i} = \frac{i+1}{i}$.

So $P(n)$ can be written as $\prod\limits_{i=1}^{n} \left( \frac{i+1}{i} \right) = n + 1$.

Base Case (n=1):

For $n=1$, the left side of the statement is the first term of the product (for $i=1$):

LHS $= \left( 1+\frac{1}{1} \right) = 1 + 1 = 2$

The right side of the statement for $n=1$ is:

RHS $= (1 + 1) = 2$

Comparing LHS and RHS:

$2 = 2$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$\left( 1+\frac{1}{1} \right) \left( 1+\frac{1}{2} \right) \left( 1+\frac{1}{3} \right) … \left( 1+\frac{1}{k} \right) = (k + 1)$

This can be written as $\prod\limits_{i=1}^{k} \left( \frac{i+1}{i} \right) = k + 1$.


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$\left( 1+\frac{1}{1} \right) \left( 1+\frac{1}{2} \right) … \left( 1+\frac{1}{k} \right) \left( 1+\frac{1}{k+1} \right) = ((k+1) + 1) = k + 2$.

Consider the left side of the statement for $n=k+1$:

LHS $= \left[ \left( 1+\frac{1}{1} \right) \left( 1+\frac{1}{2} \right) … \left( 1+\frac{1}{k} \right) \right] \left( 1+\frac{1}{k+1} \right)$

Using the induction hypothesis, the product in the square brackets is equal to $(k+1)$:

LHS $= (k + 1) \left( 1+\frac{1}{k+1} \right)$

Simplify the term in the parenthesis:

$1+\frac{1}{k+1} = \frac{k+1}{k+1} + \frac{1}{k+1} = \frac{k+1+1}{k+1} = \frac{k+2}{k+1}$.

Substitute this back into the LHS expression:

LHS $= (k + 1) \cdot \left( \frac{k+2}{k+1} \right)$

Since $k$ is a natural number, $k \ge 1$, so $k+1 \ne 0$. We can cancel the term $(k+1)$:

LHS $= \cancel{(k + 1)} \cdot \frac{k+2}{\cancel{(k+1)}}$

LHS $= k + 2$

This is the right side of the statement for $n=k+1$ (RHS $= k + 2$).

Since LHS = RHS, the statement $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): \left( 1+\frac{1}{1} \right) \left( 1+\frac{1}{2} \right) \left( 1+\frac{1}{3} \right) … \left( 1+\frac{1}{n} \right) = (n + 1)$ is true for all natural numbers $n$.

Question 15. 12 + 32 + 52 + …+ (2n – 1)2 = $\frac{n(2n \;-\; 1) (2n \;+\; 1)}{3}$ .

Answer:

Given:

The statement $1^2 + 3^2 + 5^2 + \dots + (2n – 1)^2 = \frac{n(2n – 1)(2n + 1)}{3}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$1^2 + 3^2 + 5^2 + \dots + (2n – 1)^2 = \frac{n(2n – 1)(2n + 1)}{3}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1^2 + 3^2 + 5^2 + \dots + (2n – 1)^2 = \frac{n(2n – 1)(2n + 1)}{3}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= (2 \cdot 1 – 1)^2 = (2 – 1)^2 = 1^2 = 1$

The right side of the statement for $n=1$ is:

RHS $= \frac{1(2 \cdot 1 – 1)(2 \cdot 1 + 1)}{3} = \frac{1(2 – 1)(2 + 1)}{3} = \frac{1 \cdot 1 \cdot 3}{3} = \frac{3}{3} = 1$

Comparing LHS and RHS:

$1 = 1$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1^2 + 3^2 + 5^2 + \dots + (2k – 1)^2 = \frac{k(2k – 1)(2k + 1)}{3}$


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$1^2 + 3^2 + 5^2 + \dots + (2(k+1) – 1)^2 = \frac{(k+1)(2(k+1) – 1)(2(k+1) + 1)}{3}$

The $(k+1)$-th term is $(2(k+1) – 1)^2 = (2k + 2 – 1)^2 = (2k+1)^2$.

The right side for $n=k+1$ is $\frac{(k+1)(2k+2-1)(2k+2+1)}{3} = \frac{(k+1)(2k+1)(2k+3)}{3}$.

Consider the left side of the statement for $n=k+1$:

LHS $= (1^2 + 3^2 + 5^2 + \dots + (2k – 1)^2) + (2k+1)^2$

Using the induction hypothesis, we can replace the sum in the parenthesis:

LHS $= \frac{k(2k – 1)(2k + 1)}{3} + (2k+1)^2$

Find a common denominator:

LHS $= \frac{k(2k – 1)(2k + 1)}{3} + \frac{3(2k+1)^2}{3}$

Factor out the common term $(2k+1)$ from the numerator:

Numerator $= (2k+1) [k(2k-1) + 3(2k+1)]$

Expand the terms inside the square brackets:

$k(2k-1) + 3(2k+1) = (2k^2 - k) + (6k + 3) = 2k^2 + 5k + 3$

Factor the quadratic $2k^2 + 5k + 3$. We look for two numbers that multiply to $2 \times 3 = 6$ and add up to 5. These numbers are 2 and 3.

$2k^2 + 5k + 3 = 2k^2 + 2k + 3k + 3 = 2k(k+1) + 3(k+1) = (2k+3)(k+1)$

Substitute the factored expression back into the numerator:

Numerator $= (2k+1)(k+1)(2k+3)$

Substitute the numerator back into the LHS expression:

LHS $= \frac{(2k+1)(k+1)(2k+3)}{3}$

Rearrange the terms in the numerator:

LHS $= \frac{(k+1)(2k+1)(2k+3)}{3}$

This is the right side of the statement for $n=k+1$ (RHS $= \frac{(k+1)(2k+1)(2k+3)}{3}$).

Since LHS = RHS, the statement $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1^2 + 3^2 + 5^2 + \dots + (2n – 1)^2 = \frac{n(2n – 1)(2n + 1)}{3}$ is true for all natural numbers $n$.

Question 16. $\frac{1}{1.4}$ + $\frac{1}{4.7}$ + $\frac{1}{7.10}$ + … + $\frac{1}{(3n \;-\; 2) (3n \;+\; 1)}$ = $\frac{n}{(3n \;+\; 1)}$ .

Answer:

Given:

The statement $\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term:

LHS $= \frac{1}{(3 \cdot 1 - 2)(3 \cdot 1 + 1)} = \frac{1}{(3 - 2)(3 + 1)} = \frac{1}{1 \cdot 4} = \frac{1}{4}$

The right side of the statement for $n=1$ is:

RHS $= \frac{1}{(3 \cdot 1 + 1)} = \frac{1}{3 + 1} = \frac{1}{4}$

Comparing LHS and RHS:

$\frac{1}{4} = \frac{1}{4}$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3k - 2)(3k + 1)} = \frac{k}{3k + 1}$


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \dots + \frac{1}{(3(k+1) - 2)(3(k+1) + 1)} = \frac{k+1}{3(k+1) + 1}$

The $(k+1)$-th term in the sum is $\frac{1}{(3(k+1) - 2)(3(k+1) + 1)} = \frac{1}{(3k + 3 - 2)(3k + 3 + 1)} = \frac{1}{(3k + 1)(3k + 4)}$.

The statement for $n=k+1$ is:

$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \dots + \frac{1}{(3k - 2)(3k + 1)} + \frac{1}{(3k + 1)(3k + 4)} = \frac{k+1}{3k + 4}$.

Consider the left side of the statement for $n=k+1$:

LHS $= \left( \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \dots + \frac{1}{(3k - 2)(3k + 1)} \right) + \frac{1}{(3k + 1)(3k + 4)}$

Using the induction hypothesis, we can replace the sum in the parenthesis with $\frac{k}{3k + 1}$:

LHS $= \frac{k}{3k + 1} + \frac{1}{(3k + 1)(3k + 4)}$

Find a common denominator, which is $(3k+1)(3k+4)$:

LHS $= \frac{k(3k + 4)}{(3k + 1)(3k + 4)} + \frac{1}{(3k + 1)(3k + 4)}$

Combine the terms in the numerator:

LHS $= \frac{k(3k + 4) + 1}{(3k + 1)(3k + 4)}$

Expand the numerator:

Numerator $= 3k^2 + 4k + 1$

Factor the quadratic numerator $3k^2 + 4k + 1$: $3k^2 + 3k + k + 1 = 3k(k+1) + 1(k+1) = (3k+1)(k+1)$.

Substitute the factored numerator back into the LHS expression:

LHS $= \frac{(3k + 1)(k + 1)}{(3k + 1)(3k + 4)}$

Cancel out the common factor $(3k+1)$ (since $k \in \mathbb{N}$, $3k+1$ is never zero):

LHS $= \frac{\cancel{(3k + 1)}(k + 1)}{\cancel{(3k + 1)}(3k + 4)}$

LHS $= \frac{k + 1}{3k + 4}$

This is the right side of the statement for $n=k+1$ (RHS $= \frac{k+1}{3k + 4}$).

Since LHS = RHS, the statement $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}$ is true for all natural numbers $n$.

Question 17. $\frac{1}{3.5}$ + $\frac{1}{5.7}$ + $\frac{1}{7.9}$ + … + $\frac{1}{(2n \;+\; 1) (2n \;+\; 3)}$ = $\frac{n}{3(2n \;+\; 3)}$ .

Answer:

Given:

The statement $\frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \dots + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$\frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \dots + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$\frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \dots + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}$".

Base Case (n=1):

For $n=1$, the left side of the statement is the first term ($n=1$):

LHS $= \frac{1}{(2 \cdot 1 + 1)(2 \cdot 1 + 3)} = \frac{1}{(2 + 1)(2 + 3)} = \frac{1}{3 \cdot 5} = \frac{1}{15}$

The right side of the statement for $n=1$ is:

RHS $= \frac{1}{3(2 \cdot 1 + 3)} = \frac{1}{3(2 + 3)} = \frac{1}{3(5)} = \frac{1}{15}$

Comparing LHS and RHS:

$\frac{1}{15} = \frac{1}{15}$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$\frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \dots + \frac{1}{(2k + 1)(2k + 3)} = \frac{k}{3(2k + 3)}$


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$\frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{(2(k+1) + 1)(2(k+1) + 3)} = \frac{k+1}{3(2(k+1) + 3)}$

The $(k+1)$-th term in the sum is $\frac{1}{(2k + 2 + 1)(2k + 2 + 3)} = \frac{1}{(2k + 3)(2k + 5)}$.

The right side for $n=k+1$ is $\frac{k+1}{3(2k + 2 + 3)} = \frac{k+1}{3(2k + 5)}$.

Consider the left side of the statement for $n=k+1$:

LHS $= \left( \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{(2k + 1)(2k + 3)} \right) + \frac{1}{(2k + 3)(2k + 5)}$

Using the induction hypothesis, we can replace the sum in the parenthesis:

LHS $= \frac{k}{3(2k + 3)} + \frac{1}{(2k + 3)(2k + 5)}$

Find a common denominator, which is $3(2k+3)(2k+5)$:

LHS $= \frac{k \cdot (2k + 5)}{3(2k + 3)(2k + 5)} + \frac{1 \cdot 3}{3(2k + 3)(2k + 5)}$

Combine the terms in the numerator:

LHS $= \frac{k(2k + 5) + 3}{3(2k + 3)(2k + 5)}$

Expand the numerator:

Numerator $= 2k^2 + 5k + 3$

Factor the quadratic numerator $2k^2 + 5k + 3$. We look for two numbers that multiply to $2 \times 3 = 6$ and add up to 5. These numbers are 2 and 3.

$2k^2 + 5k + 3 = 2k^2 + 2k + 3k + 3 = 2k(k+1) + 3(k+1) = (2k+3)(k+1)$

Substitute the factored numerator back into the LHS expression:

LHS $= \frac{(2k + 3)(k + 1)}{3(2k + 3)(2k + 5)}$

Cancel out the common factor $(2k+3)$ (since $k \in \mathbb{N}$, $2k+3$ is never zero):

LHS $= \frac{\cancel{(2k + 3)}(k + 1)}{3\cancel{(2k + 3)}(2k + 5)}$

LHS $= \frac{k + 1}{3(2k + 5)}$

This matches the right side of the statement for $n=k+1$ (RHS $= \frac{k+1}{3(2k + 5)}$).

Since LHS = RHS, the statement $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \dots + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}$ is true for all natural numbers $n$.

Question 18. 1 + 2 + 3 + … + n < $\frac{1}{8}$ (2n + 1)2 .

Answer:

Given:

The inequality $1 + 2 + 3 + \dots + n < \frac{1}{8} (2n + 1)^2$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$1 + 2 + 3 + \dots + n < \frac{1}{8} (2n + 1)^2$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$1 + 2 + 3 + \dots + n < \frac{1}{8} (2n + 1)^2$".

We know that the sum of the first $n$ natural numbers is given by the formula $1 + 2 + \dots + n = \frac{n(n+1)}{2}$. So, the statement $P(n)$ can be written as $\frac{n(n+1)}{2} < \frac{(2n+1)^2}{8}$.

Base Case (n=1):

For $n=1$, the left side of the inequality is:

LHS $= 1$

The right side of the inequality for $n=1$ is:

RHS $= \frac{1}{8} (2 \cdot 1 + 1)^2 = \frac{1}{8} (2 + 1)^2 = \frac{1}{8} (3)^2 = \frac{9}{8}$

Comparing LHS and RHS:

$1 < \frac{9}{8}$

This is true since $1 = \frac{8}{8}$ and $\frac{8}{8} < \frac{9}{8}$. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$1 + 2 + 3 + \dots + k < \frac{1}{8} (2k + 1)^2$

This can also be written as $\frac{k(k+1)}{2} < \frac{(2k+1)^2}{8}$.


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that:

$1 + 2 + 3 + \dots + (k+1) < \frac{1}{8} (2(k+1) + 1)^2$

The right side of the inequality for $n=k+1$ simplifies to $\frac{1}{8} (2k + 2 + 1)^2 = \frac{1}{8} (2k + 3)^2$.

Consider the left side of the statement for $n=k+1$:

LHS $= (1 + 2 + 3 + \dots + k) + (k+1)$

Using the induction hypothesis, we know that $1 + 2 + 3 + \dots + k < \frac{1}{8} (2k + 1)^2$. Therefore, we can write:

LHS $< \frac{1}{8} (2k + 1)^2 + (k+1)$

Now, we want to show that $\frac{1}{8} (2k + 1)^2 + (k+1) \le \frac{1}{8} (2k + 3)^2$. If we can show this, then the strict inequality will follow from the induction hypothesis.

Let's simplify the expression $\frac{1}{8} (2k + 1)^2 + (k+1)$:

$\frac{1}{8} (2k + 1)^2 + (k+1) = \frac{(2k)^2 + 2(2k)(1) + 1^2}{8} + (k+1)$

$= \frac{4k^2 + 4k + 1}{8} + k + 1$

To combine the terms, find a common denominator (8):

$= \frac{4k^2 + 4k + 1}{8} + \frac{8(k+1)}{8}$

$= \frac{4k^2 + 4k + 1 + 8k + 8}{8}$

$= \frac{4k^2 + 12k + 9}{8}$

Now, let's consider the target RHS for $n=k+1$, which is $\frac{1}{8} (2k + 3)^2$. Expand $(2k+3)^2$:

$(2k + 3)^2 = (2k)^2 + 2(2k)(3) + 3^2 = 4k^2 + 12k + 9$

So, $\frac{1}{8} (2k + 3)^2 = \frac{4k^2 + 12k + 9}{8}$.

We found that $\frac{1}{8} (2k + 1)^2 + (k+1)$ is exactly equal to $\frac{4k^2 + 12k + 9}{8}$.

Therefore, we have:

$1 + 2 + 3 + \dots + (k+1) < \frac{1}{8} (2k + 1)^2 + (k+1) = \frac{4k^2 + 12k + 9}{8} = \frac{(2k + 3)^2}{8}$

So, $1 + 2 + 3 + \dots + (k+1) < \frac{(2(k+1) + 1)^2}{8}$.

This shows that $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 1 + 2 + 3 + \dots + n < \frac{1}{8} (2n + 1)^2$ is true for all natural numbers $n$.

Question 19. n (n + 1) (n + 5) is a multiple of 3.

Answer:

Given:

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$n(n+1)(n+5)$ is a multiple of 3 for all natural numbers $n$.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$n(n+1)(n+5)$ is divisible by 3".

Base Case (n=1):

For $n=1$, the expression is $1(1+1)(1+5)$.

$1(1+1)(1+5) = 1 \cdot 2 \cdot 6 = 12$.

Since $12 = 3 \times 4$, 12 is divisible by 3.

Thus, $P(1)$ is true.

Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$.

That is, assume $k(k+1)(k+5)$ is divisible by 3.

This means there exists an integer $m$ such that $k(k+1)(k+5) = 3m$.

Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., $(k+1)((k+1)+1)((k+1)+5)$ is divisible by 3.

Consider the expression for $n=k+1$:

$(k+1)(k+2)(k+6)$

We can rewrite the term $(k+6)$ as $(k+5) + 1$:

$(k+1)(k+2)(k+6) = (k+1)(k+2)((k+5) + 1)$

Distribute $(k+1)(k+2)$:

$(k+1)(k+2)(k+6) = (k+1)(k+2)(k+5) + (k+1)(k+2) \cdot 1$

Rearrange the terms to group with the induction hypothesis structure $k(k+1)(k+5)$:

$(k+1)(k+2)(k+5) = (k+1)(k+5)(k+2)$

$(k+1)(k+5)(k+2) = (k+1)(k+5)(k + 1 + 1)$

$= (k+1)(k+5)k + (k+1)(k+5)(1) + (k+1)(k+5)(1)$

$= k(k+1)(k+5) + (k+1)(k+5) + (k+1)(k+5)$

This expansion is complex. Let's use the expansion method again.

Consider the expression for $n=k+1$:

$(k+1)(k+2)(k+6)$

Expand this expression:

$(k+1)(k+2)(k+6) = (k^2 + 3k + 2)(k+6)$

$= k(k^2 + 3k + 2) + 6(k^2 + 3k + 2)$

$= k^3 + 3k^2 + 2k + 6k^2 + 18k + 12$

$= k^3 + 9k^2 + 20k + 12$

From the induction hypothesis, we know that $k(k+1)(k+5) = k(k^2 + 6k + 5) = k^3 + 6k^2 + 5k$ is divisible by 3.

Let's rewrite the expression for $n=k+1$ by grouping terms to isolate the expression from the induction hypothesis:

$(k^3 + 9k^2 + 20k + 12) = (k^3 + 6k^2 + 5k) + (3k^2 + 15k + 12)$

We can factor out 3 from the second group of terms:

$3k^2 + 15k + 12 = 3(k^2 + 5k + 4)$

So, $(k+1)(k+2)(k+6) = k(k+1)(k+5) + 3(k^2 + 5k + 4)$.

By the induction hypothesis, $k(k+1)(k+5)$ is divisible by 3.

The term $3(k^2 + 5k + 4)$ is clearly divisible by 3, because $k$ is an integer, which means $k^2$, $5k$, and $k^2 + 5k + 4$ are all integers. Therefore, $3 \times (\text{an integer})$ is divisible by 3.

Since both terms, $k(k+1)(k+5)$ and $3(k^2 + 5k + 4)$, are divisible by 3, their sum, $(k+1)(k+2)(k+6)$, is also divisible by 3.

Thus, $P(k+1)$ is true.

Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): n(n+1)(n+5)$ is divisible by 3 is true for all natural numbers $n$.

Question 20. 102n – 1 + 1 is divisible by 11.

Answer:

Given:

The statement $10^{2n - 1} + 1$ is divisible by 11.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$10^{2n - 1} + 1$ is divisible by 11 for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$10^{2n - 1} + 1$ is divisible by 11".

Base Case (n=1):

For $n=1$, the expression is:

$10^{2(1) - 1} + 1 = 10^{2 - 1} + 1 = 10^1 + 1 = 10 + 1 = 11$

Since 11 is divisible by 11, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume $10^{2k - 1} + 1$ is divisible by 11.

This means there exists an integer $m$ such that:

$10^{2k - 1} + 1 = 11m$

From this, we can write $10^{2k - 1} = 11m - 1$.


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., $10^{2(k+1) - 1} + 1$ is divisible by 11.

Consider the expression for $n=k+1$:

$10^{2(k+1) - 1} + 1 = 10^{2k + 2 - 1} + 1 = 10^{2k + 1} + 1$

Rewrite the term $10^{2k + 1}$ using properties of exponents:

$10^{2k + 1} = 10^{(2k - 1) + 2} = 10^{2k - 1} \cdot 10^2 = 100 \cdot 10^{2k - 1}$

Substitute this back into the expression for $n=k+1$:

$10^{2k + 1} + 1 = 100 \cdot 10^{2k - 1} + 1$

Now, use the induction hypothesis: $10^{2k - 1} = 11m - 1$. Substitute this into the equation:

$100 \cdot (11m - 1) + 1$

Expand the expression:

$1100m - 100 + 1$

Simplify the expression:

$1100m - 99$

Factor out 11 from the terms:

$11(100m - 9)$

Since $m$ is an integer (from the induction hypothesis), $100m - 9$ is also an integer.

Let $M = 100m - 9$. Then the expression is $11M$, which is divisible by 11.

Thus, $10^{2(k+1) - 1} + 1$ is divisible by 11. This shows that $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 10^{2n - 1} + 1$ is divisible by 11 is true for all natural numbers $n$.

Question 21. x2n – y2n is divisible by x + y.

Answer:

Given:

The statement $x^{2n} – y^{2n}$ is divisible by $x + y$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).

We assume $x$ and $y$ are integers for the property of divisibility to be well-defined.


To Prove:

$x^{2n} – y^{2n}$ is divisible by $x + y$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$x^{2n} - y^{2n}$ is divisible by $x + y$".

Base Case (n=1):

For $n=1$, the expression is $x^{2(1)} - y^{2(1)} = x^2 - y^2$.

Using the difference of squares formula, we have $x^2 - y^2 = (x - y)(x + y)$.

Since $(x^2 - y^2)$ can be written as a product of $(x+y)$ and $(x-y)$ (which is an integer because $x$ and $y$ are integers), $x^2 - y^2$ is divisible by $x+y$.

Thus, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some arbitrary natural number $k$.

That is, assume $x^{2k} - y^{2k}$ is divisible by $x + y$.

This means there exists an integer $m$ such that $x^{2k} - y^{2k} = m(x+y)$.


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., $x^{2(k+1)} - y^{2(k+1)}$ is divisible by $x + y$.

Consider the expression for $n=k+1$:

$x^{2(k+1)} - y^{2(k+1)} = x^{2k+2} - y^{2k+2}$

Using properties of exponents, this can be written as:

$= x^{2k} \cdot x^2 - y^{2k} \cdot y^2$

To introduce the term from the induction hypothesis, $x^{2k} - y^{2k}$, we can add and subtract $x^{2k} y^2$:

$= x^{2k} x^2 - x^{2k} y^2 + x^{2k} y^2 - y^{2k} y^2$

Group the terms:

$= x^{2k}(x^2 - y^2) + y^2(x^{2k} - y^{2k})$

Now, use the fact that $x^2 - y^2 = (x-y)(x+y)$ and the induction hypothesis $x^{2k} - y^{2k} = m(x+y)$:

$= x^{2k} \cdot (x-y)(x+y) + y^2 \cdot m(x+y)$

Factor out the common term $(x+y)$:

$= (x+y) [x^{2k}(x-y) + y^2 m]$

Since $x, y, k$ are integers and $m$ is an integer (by the induction hypothesis), the term in the square brackets $[x^{2k}(x-y) + y^2 m]$ is an integer.

Therefore, $x^{2(k+1)} - y^{2(k+1)}$ is a product of $(x+y)$ and an integer, which means it is divisible by $(x+y)$.

Thus, $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement "$x^{2n} - y^{2n}$ is divisible by $x + y$" is true for all natural numbers $n$, assuming $x$ and $y$ are integers.

Question 22. 32n + 2 – 8n – 9 is divisible by 8.

Answer:

Given:

The statement $3^{2n + 2} - 8n - 9$ is divisible by 8.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$3^{2n + 2} - 8n - 9$ is divisible by 8 for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$3^{2n + 2} - 8n - 9$ is divisible by 8".

Base Case (n=1):

For $n=1$, evaluate the expression:

$3^{2(1) + 2} - 8(1) - 9 = 3^{2 + 2} - 8 - 9$

$= 3^4 - 17$

$= 81 - 17$

$= 64$

Since $64 = 8 \times 8$, 64 is divisible by 8.

Thus, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some arbitrary natural number $k$. That is, assume:

$3^{2k + 2} - 8k - 9$ is divisible by 8.

This means there exists an integer $m$ such that:

$3^{2k + 2} - 8k - 9 = 8m$

From this, we can write $3^{2k + 2} = 8m + 8k + 9$.


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., $3^{2(k+1) + 2} - 8(k+1) - 9$ is divisible by 8.

Consider the expression for $n=k+1$:

$3^{2(k+1) + 2} - 8(k+1) - 9$

Simplify the exponent and the terms:

$= 3^{2k + 2 + 2} - (8k + 8) - 9$

$= 3^{2k + 4} - 8k - 8 - 9$

$= 3^{2k + 4} - 8k - 17$

Rewrite $3^{2k+4}$ using properties of exponents:

$3^{2k + 4} = 3^{2k + 2} \cdot 3^2 = 9 \cdot 3^{2k + 2}$

Substitute this back into the expression for $n=k+1$:

$= 9 \cdot 3^{2k + 2} - 8k - 17$

Now, use the induction hypothesis $3^{2k + 2} = 8m + 8k + 9$. Substitute this into the equation:

$= 9 (8m + 8k + 9) - 8k - 17$

Expand the expression:

$= 9 \cdot 8m + 9 \cdot 8k + 9 \cdot 9 - 8k - 17$

$= 72m + 72k + 81 - 8k - 17$

Group terms with $k$ and constant terms:

$= 72m + (72k - 8k) + (81 - 17)$

$= 72m + 64k + 64$

Factor out 8 from the terms:

$= 8(9m + 8k + 8)$

Since $m$ is an integer (from the induction hypothesis) and $k$ is a natural number, the term inside the parenthesis $(9m + 8k + 8)$ is an integer.

Let $M = 9m + 8k + 8$. Then the expression is $8M$, which is a multiple of 8.

Therefore, $3^{2(k+1) + 2} - 8(k+1) - 9$ is divisible by 8. This shows that $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 3^{2n + 2} - 8n - 9$ is divisible by 8 is true for all natural numbers $n$.

Question 23. 41n – 14n is a multiple of 27.

Answer:

Given:

The statement $41^n – 14^n$ is a multiple of 27.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$41^n – 14^n$ is divisible by 27 for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$41^n - 14^n$ is divisible by 27".

Base Case (n=1):

For $n=1$, the expression is:

$41^1 - 14^1 = 41 - 14 = 27$

Since 27 is divisible by 27, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some arbitrary natural number $k$. That is, assume $41^k - 14^k$ is divisible by 27.

This means there exists an integer $m$ such that:

$41^k - 14^k = 27m$

From this, we can write $41^k = 14^k + 27m$.


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., $41^{k+1} - 14^{k+1}$ is divisible by 27.

Consider the expression for $n=k+1$:

$41^{k+1} - 14^{k+1}$

Rewrite using properties of exponents:

$= 41 \cdot 41^k - 14 \cdot 14^k$

Use the induction hypothesis: $41^k = 14^k + 27m$. Substitute this into the equation:

$= 41 (14^k + 27m) - 14 \cdot 14^k$

Expand the expression:

$= 41 \cdot 14^k + 41 \cdot 27m - 14 \cdot 14^k$

Group the terms containing $14^k$:

$= (41 \cdot 14^k - 14 \cdot 14^k) + 41 \cdot 27m$

Factor out $14^k$ from the first group:

$= 14^k (41 - 14) + 41 \cdot 27m$

Simplify the term in the parenthesis:

$= 14^k (27) + 41 \cdot 27m$

Factor out 27 from both terms:

$= 27 (14^k + 41m)$

Since $k$ is a natural number, $14^k$ is an integer. By the induction hypothesis, $m$ is an integer. Therefore, the term inside the parenthesis $(14^k + 41m)$ is an integer.

Let $M = 14^k + 41m$. Then $41^{k+1} - 14^{k+1} = 27M$, which is a multiple of 27.

Thus, $41^{k+1} - 14^{k+1}$ is divisible by 27. This shows that $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): 41^n - 14^n$ is divisible by 27 is true for all natural numbers $n$.

Question 24. (2n + 7) < (n + 3)2 .

Answer:

Given:

The inequality $(2n + 7) < (n + 3)^2$.

$n$ is a natural number ($n \in \{1, 2, 3, \dots \}$).


To Prove:

$(2n + 7) < (n + 3)^2$ for all natural numbers $n$, using the principle of mathematical induction.


Proof: Using Mathematical Induction

Let $P(n)$ be the statement "$(2n + 7) < (n + 3)^2$".

Base Case (n=1):

For $n=1$, the left side of the inequality is:

LHS $= 2(1) + 7 = 2 + 7 = 9$

The right side of the inequality for $n=1$ is:

RHS $= (1 + 3)^2 = 4^2 = 16$

Comparing LHS and RHS:

$9 < 16$

This is true. So, $P(1)$ is true.


Induction Hypothesis:

Assume that $P(k)$ is true for some natural number $k$. That is, assume:

$(2k + 7) < (k + 3)^2$

$(2k + 7) < k^2 + 6k + 9$


Inductive Step (n=k+1):

We need to prove that $P(k+1)$ is true, i.e., we need to show that $(2(k+1) + 7) < ((k+1) + 3)^2$.

Simplify the inequality we need to show:

$(2k + 2 + 7) < (k + 4)^2$

$(2k + 9) < k^2 + 8k + 16$

Consider the left side of the statement for $n=k+1$:

LHS$_{k+1} = 2(k+1) + 7 = 2k + 2 + 7 = 2k + 9$.

From the induction hypothesis, we have $2k + 7 < (k+3)^2$.

Add 2 to both sides of this inequality:

$2k + 7 + 2 < (k+3)^2 + 2$

$2k + 9 < k^2 + 6k + 9 + 2$

$2k + 9 < k^2 + 6k + 11$

Now, consider the right side of the inequality for $n=k+1$:

RHS$_{k+1} = (k+4)^2 = k^2 + 8k + 16$.

We need to show that $2k + 9 < k^2 + 8k + 16$.

We know that $2k + 9 < k^2 + 6k + 11$. Let's compare $k^2 + 6k + 11$ with $k^2 + 8k + 16$.

Consider the difference: $(k^2 + 8k + 16) - (k^2 + 6k + 11) = 2k + 5$.

Since $k$ is a natural number, $k \ge 1$. Thus, $2k \ge 2$, and $2k + 5 \ge 2 + 5 = 7$.

Since $7 > 0$, the difference is positive: $(k^2 + 8k + 16) - (k^2 + 6k + 11) > 0$.

This means $k^2 + 6k + 11 < k^2 + 8k + 16$.

Combining the inequalities:

$2k + 9 < k^2 + 6k + 11$ (from adding 2 to the IH)

$k^2 + 6k + 11 < k^2 + 8k + 16$ (as shown above)

By the transitive property of inequalities, we have:

$2k + 9 < k^2 + 8k + 16$

$(2(k+1) + 7) < ((k+1) + 3)^2$

This shows that $P(k+1)$ is true.


Conclusion:

By the Principle of Mathematical Induction, the statement $P(n): (2n + 7) < (n + 3)^2$ is true for all natural numbers $n$.